
ENERGYENERGY
U.S. DEPARTMENT OF

Argonne National Laboratory is a U.S. Department of
Energy laboratory managed by U Chicago Argonne, LLC.

The experimental resources for this research were provided by the Texas Advanced Computing Center
(TACC) on the Stampede supercomputer and by the National Energy Research Scientific Computing
Center (NERSC) on the Edison Cray XC30 supercomputer. This material was based upon work
supported by the U.S. Dept. of Energy, Office of Science, Advanced Scientific Computing Research
(SC-21), under contract DE-AC02-06CH11357

Part II. Process-based Asynchronous Progress Model for MPI RMA

Min Si
University of Tokyo, JAPAN

msi@il.is.s.u-tokyo.ac.jp

Pavan Balaji (Co-advisor)
Argonne National Laboratory, USA

balaji@mcs.anl.gov

Techniques for Enabling Highly Efficient Message Passing
on Many-Core Architectures 	

n  Problem in MPI RMA-based PGAS n  Solution: Casper −− Process-based Asynchronous Progress Model [2]

Reference
[1] M.Si, A.J.Pena, P.Balaji, M.Takagi, and Y.Ishikawa, “MT-MPI: Multithreaded MPI for Many-Core
Environments,” in Proceedings of the 28th ACM ICS, June 2014.
[2] M.Si, A.J.Pena, J.Hammond, P.Balaji ,M.Takagi, and Y.Ishikawa, “Casper: An Asynchronous Progress
Model for MPI RMA on Many- Core Architectures,” in IPDPS 2015.

n  Core concept
•  #cores is rapidly growing
•  Not all of the cores are always keeping busy
•  Dedicate small & user-specified number of

cores to ghost processes
•  Ghost process intercepts all RMA operations to

the user processes
•  Improve ASYNC progress for SW-handled

operations without affecting HW-handled RMA

ü  No multithreading or interrupt overhead
ü  Flexible core deployment
ü  Portable PMPI* redirection

n  Three Primary Functionalities
1.  MPI_COMM_WORLD COMM_USER_WORLD
2.  Shared memory mapping between local user

and ghost processes (MPI-3
MPI_Win_allocate_shared)

3.  Redirect RMA operations to ghost processes.

Yutaka Ishikawa (Advisor)
RIKEN AICS, JAPAN

yutaka.ishikawa@riken.jp

n  Problem in hybrid MPI + Threads n  Solution: MT-MPI −− Sharing Idle Threads with Application inside MPI [1]

#pragma omp parallel
{ /* User Computation */ }

MPI_Function ();

Funneled Mode

#pragma omp parallel
{ /* User Computation */ }

MPI_Function(){

#pragma omp parallel
{ /* Internal Processing */ }

}

n  OpenMP Runtime Extension
•  Expose number of IDLE threads

n  MPI Internal Parallelism
1.  Derived datatype processing
2.  SHM communication
3.  InfiniBand network

MPI Process	

COMP.	

MPI COMM.	

Part I. Multithreaded MPI for Hybrid MPI+Threads Model

RMA Image	Compu&ng	 Node	 1

Socket 0	

P P
P G

Socket 1	

P P
P G

Compu&ng	 Node	 2

Socket 0	

P P
P G

Socket 1	

P P
P G

Process 0 Process 1

+=
Computation ACC(data)

Ghost
Process

MPI_Recv	

Process 0 Process 1

+=
Computation

ACC(data)

MPI call	
Delay	

Process 0 Process 1

+=
Computation ACC(data)

Helper
thread

Process 1

+=
Computation ACC(data) Helper

thread
Interrupt	

Process 0

•  Thread Funneled or Serialized mode
•  Multiple threads parallelize computation
•  Only one thread issues MPI calls
•  Most cores are IDLE during MPI Calls

•  Suitable for applications with large
memory requirements. (i.e., NWChem)

•  MPI RMA is not truly asynchronous

1.
0

1.
0

1.
3

2.
0

2.
8

 3.
8

 4.
5

4.
7

3.
1

1.
0

1.
0

1.
1

1.

3

1.
5

1.
8

2.
2

2.
3

2.
2

0
1
2
3
4
5
6

1 2 4 8 16 32 64 128 240

Sp
ee

du
p	

Number of Threads	

Communication Time Speedup
Execution Time Speedup

In this thesis, we investigate the characterist-
ics of MPI on massively parallel many-core
architectures and propose efficient strategies
for two most popular programming models:

• Improving core utilization and commu-
nication for the hybrid MPI+thread model;

• Efficient process-based asynchronous
progress for the MPI one-sided communica-
tion model.

n  Many-Core
•  Massively parallel environment
•  Intel® Xeon Phi
•  Blue Gene/Q

n  Hardware Characteristics
•  Simple & low frequency core design
•  #core increases faster than other on-

chip resources

Background

n  Parallelism and Resource Sharing in Scientific Applications
2.  MPI RMA-based PGAS model
ü Memory sharing across nodes

1.  Hybrid MPI+threads model
ü Massive parallelism in computation
ü On-chip resource sharing between threads

67
.7
	 	

51
.0
	 	

39
.9
	 	

33
.7
	 	

36
.9
	 	

27
.6
	 	

22
.2
	 	

18
.4
	 	

0	

20	

40	

60	

80	

1440	 1920	 2400	 2800	

(T
)	 P

or
&o

n	
Ti
m
e	
(m

in
)	

Number	 of	 Cores

Original	 MPI	 Casper	
Thread	 (O)	 Thread	 (D)	

NWChem Quantum Chemistry Suite

NERSC Edison Cray XC30
Input tce_c20_triplet
Compute-intensive CCSD(T) simulation	

Local buffer	

ACC	GET GET	

Typical Get-Compute-Update	

•  Correctness challenges
 i.e. lock permission, self lock consistency,
 simultaneous epochs…
•  Performance challenges
 i.e. Memory locality

•  Algorithms tradeoff
-  Number of IDLE

threads is unknown.

•  Nested parallelism
-  Creates new Pthreads and

offloads scheduling to OS
-  Threads overrunning.

n  Challenges

n  Correctness and Performance challenges
•  Ensuring correctness
1. Lock permission for shared ghost processes
2. Managing multiple ghost processes
3. Self lock consistency
4. Multiple simultaneous epochs
•  Ensuring performance
1. Memory locality
	

Hybrid NAS MG - class E
using 64 MPI processes

n  Traditional ASYNC Progress

× Overhead of frequent interrupts

× Waste half cores or oversubscription
× Multithreading overhead in MPI

1.  Thread-based Approach
•  Per-MPI process background thread

2.  Interrupt-based Approach
•  Per-operation hardware interrupts

awaken kernel thread

